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Abstract

Implicit Monte Carlo (IMC) and Implicit Monte Carlo Diffusion (IMD) are approaches to the
numerical solution of the equations of radiative transfer. IMD was previously derived and nu-
merically tested on grey, or frequency-integrated problems [1]. In this research, we extend Im-
plicit Monte Carlo Diffusion (IMD) to account for frequency dependence, and we implement
the difference formulation[2] as a source manipulation variance reduction technique. We derive
the relevant probability distributions and present the frequency dependent IMD algorithm, with
and without the difference formulation. The IMD code with and without the difference formu-
lation was tested using both grey and frequency dependent benchmark problems. The Su and
Olson semi-analytic Marshak wave benchmark was used to demonstrate the validity of the code
for grey problems [3]. The Su and Olson semi-analytic picket fence benchmark was used for
the frequency dependent problems [4]. The frequency dependent IMD algorithm reproduces the
results of both Su and Olson benchmark problems. Frequency group ref nement studies indi-
cate that the computational cost of ref ning the group structure is likely less than that of group
ref nement in deterministic solutions of the radiation diffusion methods. Our results show that
applying the difference formulation to the IMD algorithm can result in an overall increase in the
f gure of merit for frequency dependent problems. However, the creation of negatively weighted
particles from the difference formulation can cause signif cant numerical instabilities in regions
of the problem with sharp spatial gradients in the solution. An adaptive implementation of the
difference formulation may be necessary to focus its use in regions that are at or near thermal
equilibrium.

Key words: IMD, Non-Grey, Multigroup, The Difference Formulation

∗Corresponding auther. Tel + 1 541 990 2126; fax + 541 737 0480; e-mail: clevelam@onid.oregonstate.edu
Preprint submitted to Journal of Computational Physics March 29, 2010



1. Introduction

The Implicit Monte Carlo (IMC) method has been shown to produce stable and robust solu-
tions of the equations of radiative transfer in thick diffuse systems, but its computational costs
can be prohibitively large, particularly in regions dominated by “effective scattering”. There have
been a variety of methods developed to deal with these inefficiencies [5, 6, 1, 7, 11].

Symbolic Implicit Monte Carlo (SIMC) attempts to improve the efficiency of IMC using a
spontaneous emission source with symbolic weights. If an emission source term is approximated
as piecewise constant in a spatial cell, and the actual source distribution has a strong dependence
on space in the cell, particles will artif cially be redistributed (or teleported) from regions where
the source is large to regions where it is small. This discretization artifact is known as teleporta-
tion error [9]. The original form of SIMCwhich relies on piecewise constant basis functions does
not approach the diffusion limit and suffers from teleportation error problems [9]. A piecewise
linear SIMC was shown to approach the diffusion limit and is much less affected by teleportation
error [8, 20]. Teleportation error also occurs in IMC for small time steps [10]. SIMC also re-
quires the solution of a non-linear system of equations at the end of the Monte Carlo simulation
to determine the true weights used to approximate the spontaneous emission source. This can be
expensive if the matrix is large, which is the case for systems with many spatial cells, or if the
matrix is dense, which is the case when the system has large time steps [6].

For many years, researchers have employed the diffusion approximation to obtain the solu-
tion of radiative transfer problems in thick highly “scattering” regions. It is well known that
the solution of the transport equation satisf es a diffusion equation as the background medium
becomes optically thick and highly “scattering”. This essentially means that the boundary layers
are no longer strongly coupled to the solution of the problem. Most problems in high energy
density physics contain some regions that are optically thick and some that are optically thin.
This motivates the development of diffusion methods that can be easily coupled to either IMC or
SIMC.

The “diffuse random walk” was proposed and developed to deal with the thick regions in
these problems. A standard IMC algorithm was modif ed to approximate multiple “scatters”
with a single diffusion event in these regions. Though it did show a potential speed-up, its most
signif cant drawback was that it did a poor job of accounting for the change in angle that occurs
after many scattering events. This meant that a standard IMC random walk had to be performed
in between all diffuse random walks [5].

The second proposed method involved coupling standard SIMC and a deterministic method
that solves the diffusion equation in thick regions [7]. This method successfully reproduced grey
and frequency dependent one-dimensional benchmark solutions. Similar to standard SIMC, it is
still necessary to solve a system of equations after the Monte Carlo transport, and teleportation
error still accumulates in transport regions. More recent research has extended SIMC to include
frequency dependence in the hybrid diffusion transport method. The difference formulation,
discussed in detail below, for SIMC was also developed and has been shown to reduce variance
in thick problems [9].

The difference formulation is a source manipulation variance reduction technique. A refer-
ence Planckian is subtracted from the photon energy density in both the transport and material
energy equations, creating a new “transformed photon energy density”. The transport operator
remains unchanged, but the solution and source functions are changed. Solving this transformed
transport problem with Monte Carlo involves the same interaction probabilities as the original
radiative transfer equation. If the reference Planckian is set equal to the Planckian of the current
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material state, computational cost is shifted to regions where the material and photon energy den-
sities are out of equilibrium. The difference formulation has been explored primarily in SIMC
and has been shown to signif cantly increase the f gure of merit compared to the standard solu-
tion [13, 9]. It has also been shown to yield promising results when used with IMC [14], but
has not been explored in conjunction with Implicit Monte Carlo Diffusion (IMD) [1] or Discrete
Diffusion Monte Carlo (DDMC) [11].

IMD and DDMC are similar in that they both apply the diffusion approximation to the effec-
tive scattering radiative transport equation, in spatially discretized form, and solve the resulting
linear system of equations via Monte Carlo. However, they are different in that IMD treats time
discretely and DDMC treats time as a continuous variable. Both methods have, to this date, only
been tested on grey (frequency independent) radiative transfer problems. Frequency dependent
diffusion models will be necessary to couple these diffusion methods to transport methods be-
cause of the strong frequency-dependence of the material opacities. In addition, the equations
have only been solved in 1D slab or spherical geometry, or 2D cylindrical geometry on orthogo-
nal or AMR grids [1, 11].

In this paper, we describe an extension of IMD to solve frequency dependent radiative transfer
problems, and investigate the use of the difference formulation in grey and frequency dependent
IMD. This publication outlines recent results described by Cleveland [12]. Though we have
chosen to work with the IMD method, our approach can also be easily applied to the DDMC
method.
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2. Frequency-Dependent Radiative Transfer

The frequency-dependent thermal photon transport equation,

1
c
∂I [r̄ , ν, Ω̄, t]
∂t

+ Ω̄ · ∇̄I [r̄ , ν, Ω̄, t] = −σ[ν]I [r̄ , ν, Ω̄, t] + σ[ν]B[ν,T], (1)

describes the photon distribution in a physical system. The photon distribution is tightly coupled
to the material energy balance, which is represented mathematically as,

ρ
dǫ
dt
=

∫ ∫

dνdΩ̄σ[ν]I [r̄ , ν, Ω̄, t] −
∫ ∫

dνdΩ̄σ[ν]B[ν,T]. (2)

In Eqs. (1) and (2), c denotes the speed of light [cm/sec], I [r̄ , ν, Ω̄, t] is photon intensity [ergs/(s-
cm2-steradians-Hz)], r̄ denotes a location in space [cm], ν denotes the photon frequency [Hz], Ω̄
denotes the direction of travel, dΩ is a solid angle [steradians], t denotes time [sec], σ denotes the
opacity [1/cm],B[ν,T] is the Planck function [ergs/(s-cm2-steradians-Hz)], T is the temperature
of the background medium [K], ρ is the material mass density [g/cm3] and ǫ is the material
specif c energy [ergs/g]. The quantitiesσ, T, and ǫ are all a function of space (r). In the interest
of brevity the spatial dependence of these variables along with the photon intensity (I ) is assumed,
but omitted in the notation.

The Planck function (or Planckian),

B[ν,T] =
2h
c2

ν3

(ehν
kT − 1)

, (3)

describes the frequency distribution of the photons being emitted from a material at temperature
T [K]. In this function h is Planck’s constant [ergs-sec] and k is Boltzmann’s constant [ergs/K].

Explicit temporal discretization of Eqs. (1) and (2) can become unstable for systems that have
strong absorption and reemission [1, 15]. This led Fleck and Cummings to develop an effective
scattering which makes the equation unconditionally stable [15]. The Fleck factor, which can be
described as the probability that an absorbed photon will not be reemitted during the current time
step, is def ned as [15]

f [T] =
1

(

1 + ∆tcσp4aT3

ρcv

) . (4)

Here cv is the specif c heat of the material. The effective absorption opacity and scattering
opacity are represented by σa[ν] = σ[ν] f [T] and σs[ν] = σ[ν](1 − f [T]) respectively. The f nal
time-discretized transport and energy balance equations, in their unconditionally stable forms,
are written as

1
c
∆I [ν,Ω̄]
∆t + Ω̄ · ∇̄In+1[ν, Ω̄] + In+1[ν, Ω̄]σ[ν]

= 1
4πcb[ν,T |n]σa[ν]aT4|n + 1

4π
σ[ν]b[ν,T |n]
σp[T |n]

∫ ∫

dνdΩ̄In+1[ν, Ω̄]σs[ν], (5)

and
ρ
∆ǫ

∆t
=

∫ ∫

dνdΩ̄In+1[ν, Ω̄]σ[ν] f [T |n] − cσp[T |n] f [T |n]aT4|n, (6)

respectively. Here

b[ν,T |n] =
h

kT|n
15
π4

(

hν
kT|n

)3

(e
hν

kT|n − 1)
(7)
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is the normalized Planck function where T |n is the material temperature at time step n, and

a =
8π5k4

15c3h3
(8)

is the radiation constant.
The frequency dependent diffusion equation can be derived from the transport equation by

multiplying Eqs. (5) and (6) by 1
c and integrating over the angular variable [1]:

1
c
∆e[ν]
∆t +

1
c ∇̄ · F

n+1[ν] + e[ν]n+1σ[ν]

= b[ν,T |n]σa[ν]aT4|n + σ[ν]b[ν,T |
n]

σp[T |n]

∫

dν en+1[ν]σs[ν], (9)

ρ

c
∆ǫ

∆t
=

∫

dνen+1[ν]σ[ν] f [T |n] − σp[T |n] f [T |n]aT4|n. (10)

From this point forward, all temperature dependent data will be assumed to be evaluated at the
previous time step unless otherwise specif ed; for example, T |n will be simply denoted as T.

A relationship between the f ux and energy density (Fick’s law) [1] can derived by assum-
ing that the photon intensity is linearly anisotropic (P1 approximation) and that the temporal
derivative of the f ux is small [16]:

F[ν] = −cD[ν]∇̄e[ν], (11)

where D[ν] is the diffusion coefficient, including effective scattering, for frequency ν,

D[ν] =
1

3σ[ν]
. (12)

This diffusion coefficient is derived under the assumption that the system has isotropic scattering.
Note that without a “f ux limiter” it is possible for this method to allow particles to transport faster
than the speed of light. This is an unphysical behavior that can cause wave fronts to propagate
too quickly in some problems. Flux limiters can be used to prevent this behavior by forcing the
diffusion coefficient to approach the proper limit as the system becomes optically thin.
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3. Probabilistic Interpretation of the frequency-dependent Diffusion Equation

In this section, we will derive a Monte Carlo method for approximating the solution of a
frequency-dependent diffusion equation, coupled thermally with matter. This derivation will be
independent of the details of the discretization of the diffusion equation and the matter energy
equation. In particular, it does not depend on a specif c coordinate system, the number of spatial
dimensions, or the specif c discretization of the f ux. It does assume that both the diffusion
equation and matter energy equation are differenced in time via forward Euler.

We will begin by considering the diffusion equation for radiation energy density e with
frequency-dependent absorption and scattering opacity. The units of e are energy/length3. We
will assume that the equation is discretized in space, so that the equation is written in terms of
e[ν]i , which is the radiation energy density for mesh element i with frequency ν. We do not
assume that the mesh elements are of any particular kind (e.g.,zones or nodes) or even that the
set of elements are all of the same type. Quantities centered at time n will be indicated with a
superscript n, with a similar notation for time n+1 quantities.

With the stated assumptions, the time-differenced diffusion equation is [1]

e[ν]n+1i − e[ν]ni
∆t

+ ∇̄ · F[ν]n+1i = −(σa[ν]i + σs[ν]i)ce[ν]n+1i (13)

+ Pth[ν]cσPaT4|i

+ Ps[ν]
∫ ∞

0
ce[ν′]n+1i σs[ν′]idν′

Here, σP is the Planck mean opacity, and Pth is the probability distribution function for
frequency of thermal emitted photons:

Pth[ν] =
σa[ν]B[ν,T]
∫ ∞

0 σa[ν′]B[ν,T]
=
σa[ν]b[ν,T]
σP

. (14)

B[ν,T] is the Planck function, and b[ν,T] is the normalized Planck function:

b[ν,T] =
B[ν,T]
∫ ∞

0 B[ν,T]
. (15)

Ps[ν] is the probability distribution function for frequency of scattered photons.
∇̄ · F[ν]n+1i is some approximation of the divergence of the f ux at frequency ν for element i.

We will make the further assumption that this quantity is a linear function of the n + 1-st time
step radiation energy density in the elements:

∇̄ · F[ν]n+1i =
∑

j

F [ν]i j e[ν]n+1j (16)

This assumption is necessary to make Eq.13 a linear equation in e[ν]n+1i . Although we are as-
suming that ∇̄ · F[ν]n+1j is linear in e[ν]n+1j , the F [ν]i j could be nonlinear functions of ν or e[ν]nj ,
as would be the case if a f ux limiter was employed.

The frequency dependence of quantities in the above equations has been indicated explicitly
by using the notation [ν]. Thus, Eq.13 could describe e[ν]i as a continuous function of ν. But
the [ν] notation used in Eq.13 could just as well formally describe a multigroup problem, in
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which the notation would indicate that the quantities were group integrated. For example, with
the def nition

e[ν] ≡
∫ νg+1

νg

e[ν′]dν′, (17)

Eq.13 would describe the time evolution of a f nite set of group-integrated energies rather than
a continuous function of frequency. We will refer to this case as the multigroup case. In the
multigroup case, integrals over ν with limits 0 and ∞ have integrands which are step functions,
and become sums over the groups. For example,

∫ ∞

0
e[ν]dν′ =

G
∑

g=0
eg[νg+1 − νg] (18)

where eg denotes the frequency averaged group energy density and G the number of groups. We
will continue to use the notation [ν] to indicate that the Monte Carlo process described below is
applicable to both continuous frequency and multigroup problems.

With the def nition in Eq. 16, Eq. 13 becomes

e[ν]n+1i − e[ν]ni
∆t

+
∑

j

F [ν]i je[ν]n+1j = −(σa[ν]i + σs[ν]i)ce[ν]n+1i (19)

+ Pth[ν]icσPaT4|i

+ Ps[ν]i
∫ ∞

0
ce[ν′]n+1i σs[ν′]idν′

The discretized diffusion equation def nes a set (one for each value of ν) of linear equations
for the e[ν]n+1j . Each of these linear equations can be written

∑

j

A[ν]i j e[ν]n+1j = q[ν]i . (20)

Here q[ν]i is the sum of the thermal source term, the scattering source, and the radiation energy
density at the old timestep:

q[ν]i = Pth[ν]iσPaT4|ic∆t+ Ps[ν]ic∆t
∫ ∞

0
e[ν′]n+1i σs[ν′]idν′ + e[ν]ni (21)

The diagonal of the matrixA[ν]i j has the value

D[ν] j ≡ A[ν] j j = 1 + ∆tF [ν] j j + c∆t(σa[ν] j + σs[ν] j) (22)

and the off-diagonal, or fringe, terms are

A[ν]i j = ∆tF [ν]i j , i , j (23)

Linear systems such as Eq. 20 can be solved by many different means [17]. Since the
scattering integral over ν couples the linear systems for all values of ν together, an iterative
approach is often required [18].
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The equation for e[ν]n+1i is accompanied by an equation for the matter specif c energy, ǫ,
whose units are energy/mass:

ρ
dǫ
dt
=

∫ ∞

0
cσa[ν′]e[ν′] − cσPaT4 (24)

(In this equation, and the rest of this work, we have assumed that the mass density ρ is constant
in time.) In both Eq.19 and Eq. 24, we have left the time-centering of the matter temperature T
unspecif ed. Various solution techniques may set specif c values for the time-centering, or use
various approximations. The Monte Carlo process we will describe below is independent of the
specif c time centering assumed for T in the thermal source term.

The time discretization of Eq. 24 via forward Euler results in

ρ
ǫn+1i − ǫni

∆t
=

∫ ∞

0
cσa[ν′]ie[ν′]n+1i − cσPaT4|i (25)

The integral over ν, containing e[ν′]n+1i , is a forward time-centered approximation for energy
absorbed by the matter from the radiation.

We will now present Monte Carlo estimates for the quantities en+1
i in equation Eq.19 and e

in Eq. 24. Our development of the Monte Carlo solution will solve Eq.19 by moving particles
among the elements i on which e is def ned. The particles will be born in elements, move among
them, and quantities will be tallied in the elements with certain probabilities to be presented
below. After these probabilities are def ned, we will show that the expectation value of one
tallied quantity, in the limit of an inf nite number of particles, will yield a value for e[ν]n+1i that
satisf es Eq.19. Another tallied quantity will, in the same limit, yield a value for e that satisf es
Eq.24.

Since the quantities we calculate satisfy Eq.19 and Eq.24 exactly in the limit of an inf nite
number of particles, we will take the estimates e[ν]n+1i and e obtained from simulations using a
f nite number of particles as Monte Carlo solutions of these equations.

The Monte Carlo solution process will involve N particles. These particles will have a total
energy of

Etotal ≡
∑

i

∫ ∞

0
e[ν]ni dνVi + cσPaT4|iVi∆t. (26)

Here, Vi is the volume associated with element i. Etotal is the total radiation energy in the problem
at tn. (If there were additional sources of radiation energy in the problem, those would be added
to Eq.26.) Each particle will carry an energy Ep ≡ Etotal/N.

The number of particles with frequency ν to be created in element i will be

Nc[ν]i ≡ N
e[ν]ni Vi + Pth[ν]cσPaT4|iVi∆t

Etotal
. (27)

Subsequent to its creation, each particle will undergo the following events, with the stated
probabilities:

- a particle may move from element i to a different element j with probability

Pm[ν]i j ≡
−∆tF [ν] ji

D[ν]i
(28)
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Note that particles only move between elements that contribute non-zero values to the discretiza-
tion of the f ux F ;

- a particle in element i may scatter, changing its frequency, with probability

Ps[ν]i ≡
c∆tσs[ν]i
D[ν]i

; (29)

upon scattering, the new frequency of the particle will be drawn from the probability distribution
function Ps[ν]|i ;

- a particle in element i may be absorbed with probability

Pa[ν]i ≡
c∆tσa[ν]i
D[ν]i

; (30)

upon absorption, the particle is terminated and its energy Ep is tallied into quantity Ea[ν]i ;
- a particle in element i may reach census with probability

Pc[ν]i ≡
1
D[ν]i

; (31)

upon reaching census, the particle is advanced no further, and its energy Ep is tallied into quantity
Ec[ν]i .

The Monte Carlo process described above will result in values Ec[ν]i and Ea
i for every ele-

ment. We will now show that these quantities, in the limit N → ∞, will produce estimates for
e[ν]n+1i and

∫

cσa[ν′]ie[ν]n+1i dν′ which satisfy Eq.19 and Eq. 25 respectively.
We begin by considering the quantity N[ν]i , which we def ne as the number of particles

with frequency ν which pass through element i during a given time step (that is, in the time
[tn, tn+1].)N[ν]i will equal the sum of the number of particles created in element i originally, plus
the number which move into the element from neighboring elements, plus the number already in
the element, but with a different frequency ν′, which scatter into the frequency ν.

In the limit N → ∞, we can express each of the quantities that contribute to N[ν]i in terms
of the probabilities def ned above multiplied by the number of particles that have passed through
neighboring elements, N[ν] j . For example, we can express the number of particles which move
into the element i from neighboring elements as

∑

j,i P
m[ν] ji N[ν] j .

Thus, as N→ ∞, N[ν]i will satisfy

N[ν]i = Nc[ν]i +
∑

j,i

Pm[ν] ji N[ν] j + Ps[ν]i
∫ ∞

0
Ps[ν′]iN[ν′]idν′ (32)

Next, we will use the number balance equation, Eq. 32, to derive an expression for Ec[ν]i , the
energy that reaches census with frequency ν. The value of Ec[ν]i will be the census probability
multiplied by the energy of every particle that has ever entered the element:

Ec[ν]i = Pc[ν]iEpN[ν]i (33)
= Pc[ν]iEpNc[ν]i
+ Pc[ν]i

∑

j,i

Pm[ν] ji EpN[ν] j

+ Pc[ν]iPs[ν]i
∫ ∞

0
Ps[ν′]iEpN[ν′]idν′
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The f rst term in Eq. 33 can be rewritten by using Eqs. 27 and 31 and the def nition of Ep:

Pc[ν]iEpN[ν]i =
e[ν]ni Vi + Pth[ν]icσPaT4|iVi∆t

D[ν]i
(34)

The second term, using Eq. 28 inside the sum, can be rewritten

Pc[ν]i
∑

j,i

Pm[ν] ji EpN[ν] j = −
∑

i, j

1
D[ν]i

∆tF [ν]i j

D[ν] j
EpN[ν] j (35)

= −
∑

i, j

∆tF [ν]i j Ec[ν] j
1
D[ν]i

The last term, using using Eq. 29, can be rewritten

Pc[ν]iPs[ν]i
∫ ∞

0
Ps[ν′]iEpN[ν′]idν′ =

Ps[ν]i
D[ν]i

∫ ∞

0
c∆tσs[ν′]iEc[ν′]idν′ (36)

With these changes, Eq. 33 becomes

Ec[ν]i =
e[ν]ni Vi + Pth[ν]icσPaT4|iVi∆t

D[ν]i
(37)

−
∑

i, j

∆tF [ν]i j Ec[ν] j
1
D[ν]i

+
Ps[ν]i
D[ν]i

∫ ∞

0
c∆tσs[ν′]iEc[ν′]idν′

Multiplying through byD[ν]i/∆t yields
D[ν]i
∆t

Ec[ν]i =
1
∆t

e[ν]ni Vi + Pth[ν]iσPaT4|iVi (38)

−
∑

i, j

F [ν]i j Ec[ν] j

+ Ps[ν]i
∫ ∞

0
cσs[ν′]iEc[ν′]idν′

Using the def nition ofD[ν]i , Eq. 22, and collecting terms in Fi j , we obtain

Ec[ν]i − e[ν]ni Vi

∆t
+
∑

j

F [ν]i jE
c[ν] j = −c(σa[ν]i + σs[ν]i)Ec[ν]i (39)

+ Pth[ν]icσPaT4|iVi

+ Ps[ν]i
∫ ∞

0
cσs[ν′]iEc[ν′]idν′

Finally, dividing by Vi and def ning ec[ν]i ≡ Ec[ν]i/Vi , we obtain
ec[ν]i − e[ν]ni

∆t
+
∑

j

F [ν]i je
c[ν] j = −c(σa[ν]i + σs[ν]i)ec[ν]i (40)

+ Pth[ν]icσPaT4|i

+ Ps[ν]i
∫ ∞

0
cσs[ν′]iec[ν′]idν′
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By comparing Eq. 40 to Eq. 19, we see that ec[ν]i satisf es the diffusion equation. Since this
quantity, which is calculated in the limit of an inf nite number of particles, is a solution of the
equation we are trying to solve, we can take the value of ec

i obtained with a f nite number of
particles as a Monte Carlo estimate of the solution of the diffusion equation, en+1[ν]i .

We will now examine Ea[ν]i , the other quantity tallied in the Monte Carlo process. In the
limit of an inf nite number of particles, we have

Ea[ν]i = Pa[ν]iEpN[ν]i . (41)

Using the def nitions of Pa[ν]i , Eq. 30, Pc[ν]i , Eq. 31, and the fact that Ec[ν] = Pc[ν]EpN[ν],
we obtain

Ea[ν]i =
c∆tσa[ν]i
D[ν]i

EpN[ν] (42)

= c∆tσa[ν]iEpN[ν]Pc[ν]i
= c∆tσa[ν]iEc[ν]i

Dividing by the element volume Vi and integrating over the frequency yields

ea
i =

∫ ∞

0
cσa[ν]i∆tec[ν]idν (43)

Since ec[ν]i has been shown to be an estimate for e[ν]n+1i , ea
i is an estimate for the integral in

Eq. 43. (For a f nite number of particles, ea
i would be formed by summing Eq. 41 over groups

in each zone and dividing by the zone volume.) Thus ea
i can be inserted into the discretized

matter energy equation, Eq. 25, in place of the integral over e[ν]n+1i , which describes the energy
absorbed by the matter from the radiation. This allows us to solve

ρ(ǫn+1i − ǫni ) = ea
i − cσPaT4|i∆t (44)

for the time n+ 1 matter specif c energy ǫn+1i .
We have now demonstrated that solutions for both Eq. 19 and Eq. 25 are provided by the

Monte Carlo procedure outlined above.
The probabilities used in this Monte Carlo process can be expressed in terms of the compo-

nents of the matrix A in the standard linear system version of the diffusion equation, Eq. 20.
Using the def nitions of the probabilities in Eqs. 28 through 31, and the equations describing
the linear system, Eqs. 20 through 23, we f nd that the probability for a particle to move from
element i to element j is

Pm[ν]i j = −A[ν] ji/A[ν]ii . (45)

The probability that a particle may scatter is

Ps[ν]i ≡ c∆tσs[ν]i/A[ν]ii . (46)

In the event of a scatter, a new frequency is selected from the probability distribution function
Ps[ν].

The probability for particle to be absorbed is

Pa[ν]i ≡ c∆tσa[ν]i/A[ν]ii . (47)
11



Finally, the probability for a particle to reach census is

Pc[ν]i ≡ 1/A[ν]ii . (48)

Any discretization of Eq.13 that results in a linear system can be solved via a Monte Carlo
method as well as by the usual techniques that involve linear system solutions, by deriving the
necessary probabilities from the matrixAi j .

In the Monte Carlo algorithm, the scattering is handled by changing the frequency of the
particles. This couples all the groups together during the advance of the particles, so there is no
need to iterate over ν.

We have referred to the quantities def ned by Eqs. 45 - 48 as probabilities, but have not shown
that they are, in general, positive and add to one. In general, they do not. Whether they do satisfy
these conditions depends on the discretization of the f ux. The sum of the probabilities is, from
Eqs. 45 - 48,

1 + c(σa[ν]i + σs[ν]i)∆t −
∑

j,i
A[ν] ji

D[ν]i
. (49)

This will sum to 1 if the numerator equals the denominator. Using Eq. 22, this holds if

−
∑

j,i

A[ν] ji = A[ν]ii , (50)

which implies
∑

j

A[ν] ji = 0. (51)

Eq. 51 is satisf ed by most of the discretization schemes of which the authors are aware.
The probabilities given by Eq. 46 and Eq. 47 are manifestly positive. The probability given

by Eq. 48 will be positive if the diagonal elements of the matrix are positive. The probability
given by Eq. 45 will be positive if the fringes of the matrix A[ν] are negative. This is the case
for most f nite difference and f nite element discretization schemes on orthogonal grids. On non-
orthogonal grids, Eq. 45 can give a negative probability of moving from element i to element
j.

In this paper, we will examine only one-dimensional Cartesian discretization schemes which
satisfy both conditions on the probabilities. In a future work, we will examine more complicated
discretization schemes, and look at Monte Carlo methods that result when one or both conditions
is/are not met.

4. Implicit Monte Carlo Diffusion Probabilities for 1-D Slab Geometry

We now introduce the spatial discretization of the 1-D slab geometry diffusion equation.
The specif c form of the matrix for this cell-centered discretization uniquely def nes the prob-
abilities in the Monte Carlo process via Eqs. (45) through (48). We employ the cell-centered
discretization of Pomraning and Szilard [19] which yields a tridiagonal system of equations for
the cell-centered energy density.

We will employ the technique of Fleck and Cummings [15] in the diffusion equation, as de-
scribed in [1], to enhance stability. This technique reduces the absorption opacity by a factor of f

12



def ned in Eq. 4, and introduces an effective scattering of (1 − f )σa. Note that the effective scat-
tering has a probability distribution function of σa[ν]b[ν,T]

σp
while the physical scattering described

by σs[ν] will in general have a probability distribution function Ps[ν].
This cell centered discretization can be written in terms of the coefficient matrix terms (A[ν],

D[ν]) def ned in Eqs. 22 and 23:

A[ν] j, j−1e[ν]n+1j−1 +D[ν] je[ν]n+1j +A[ν] j, j+1e[ν]n+1j+1 = q[ν] j , (52)

where
A[ν] j, j−1 = −c

2∆tD[ν] j−1D[ν] j

∆x j

(

∆x jD[ν] j−1 + ∆x j−1D[ν] j

) , (53)

A[ν] j, j+1 = −c
2∆tD[ν] jD[ν] j+1

∆x j

(

∆x j+1D[ν] j + ∆x jD[ν] j+1
) , (54)

D[ν] j = 1 + c∆t f[T]σa[ν] + c∆t(1 − f [T])σa[ν] + c∆tσs[ν] −A[ν] j, j−1 −A[ν] j, j+1, (55)

and

q[ν] j = c∆t f[T]σp[T]aT4| jPth[ν] + c∆t
σa[ν]b[ν,T]
σp

∫

dνe[ν]n+1j (1 − f [T])σa[ν] (56)

+ c∆tPs[ν]
∫

dνe[ν]n+1j σs[ν]

+ e[ν]nj .

In Eqs. 53, 54, and 55, D[ν] j is the diffusion coefficient, including effective scattering, in cell j
for frequency ν, ∆t is the current time step size, and ∆x j is the size of cell j.
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5. The Difference Formulation

The difference formulation is a variance reduction technique which changes the source of
the problem to focus the computational work where the solution is rapidly changing [9]. We
def ne a new quantity, ed[ν], which is the difference between the radiation energy density and the
Planckian def ned at some user-specif ed temperature Td ,

ed[ν] = e[ν] − aT4
db[ν,Td], (57)

Td can be any temperature, but the stability of the method is heavily dependent on this choice
[13]. This is a potentially useful approach because if the radiation is near equilibrium with the
matter at temperature Td, then ed will be small.

If we replace ewith ed + aT4
db in the diffusion equation, we obtain a diffusion equation for

ed:
1
c
∆ed[ν]
∆t +

1
c ∇̄ · Fd[ν]n+1 = −ed[ν]n+1σ[ν]

+b[ν,T]σ[ν] f [T]aT4 + σ[ν]b[ν,T]
σp

∫

dνed[ν]n+1σ[ν](1 − f [T])

−b[ν,Td]aT4
dσ[ν] +

σ[ν]b[ν,T]
σp

∫

dνb[ν,Td]aT4
dσ[ν](1 − f [T])

− 1
c
∆b[ν,Td]aT4

d

∆t − ∇̄
(

−D[ν]∇̄b[ν,Td]aT4
d

)

. (58)

If the new scattering term containing the normalized Planckian evaluated at the “reference” tem-
perature in Eq. (58) is integrated and expanded, the new form of the transformed diffusion
equation is

1
c
∆ed[ν]
∆t +

1
c ∇̄ · Fd[ν]n+1 = −ed[ν]n+1σ[ν]

+
σ[ν]b[ν,T]
σp

∫

dνed[ν]n+1σ[ν](1 − f [T])

+b[ν,T]σ[ν] f [T]a
(

T4 − T4
d
σdp

σp

)

+aT4
d

(

σdp

σp
b[ν,T]σ[ν] − b[ν,Td]σ[ν]

)

− 1
c
∆b[ν,Td]aT4

d

∆t − ∇̄
(

−D[ν]∇̄b[ν,Td]aT4
d

)

, (59)

where σdp is the Planck opacity evaluated at the reference temperature. If the reference tem-
perature is chosen to be piecewise constant, the time derivative of the transformed source term
is zero. However, the reference temperature is dependent on space and using the second order
differencing of the spatial gradient, we f nd

∇̄(−D[ν]∇̄b[ν,Td]aT4
d) =

−c 2D[ν] j D[ν] j+1

∆x j(∆x j+1D[ν] j+∆x j D[ν] j+1)
(

b[ν,Td| j+1]aT4
d | j+1 − b[ν,Td| j]aT4

d | j
)

+c 2D[ν] j−1D[ν] j

∆x j(∆x j D[ν] j−1+∆x j−1D[ν] j)
(

b[ν,Td| j]aT4
d | j − b[ν,Td| j−1]aT4

d | j−1
)

.

(60)

It is possible to combine Eqs. (59) and (60) to yield a familiar form of the diffusion equation
(Eq. 9).

1
c
∆ed[ν]
∆t +

1
c ∇̄ · Fd[ν]n+1 + ed[ν]n+1σ[ν] =

+
σ[ν]b[ν,T]
σp

∫

dνed[ν]n+1σ[ν](1 − f [T]) − ∇̄
(

−D[ν]∇̄b[ν,Td]aT4
d

)

. (61)
14



In fact, this equation is identical to Eq. (9) with a new source term replacing the thermal emission
source, provided the reference temperature is constant over a single time step and equal to the
local material temperature.

The coefficient matrix for the solution of the discretized difference formulation equations is
the same as that of the standard diffusion equation. This means all the probabilities that were
developed previously are applicable to difference formulation Monte Carlo simulations. The
result of the simulations, however, is “transformed” energy density (ed[ν]n+1) rather than the
actual energy density (e[ν]n+1). After the “transformed” energy density is found for a given time
step, it is possible to determine the actual energy density by adding it to aT4

db[ν,Td].
The difference formulation also changes the material energy balance equation. The absorp-

tion tally is identical in the transformed system to that of the standard system. However, the
census tally involves ed[ν] rather than e[ν]. In the difference formulation, the energy absorbed
into the material (ea

d,i) can be written as:

ea
d,i =

∫

dνc∆tσ[ν] f [T |i]ed[ν]i . (62)

Using Eq. (57) and integrating simplif es the expression to the Planck distribution,

ea
d,i =

∫

dνc∆tσ[ν] f [T |i]e[ν]i − c∆tσp f [T |i]aT4
d |i (63)

This means that the absorption tally of ed[ν] is equal to the change in the material energy density
if the reference temperature is equal to the material temperature:

ρ∆ǫ = ea
d. (64)

The derivation of the difference formulation is straightforward; creating the appropriate fre-
quency distribution for sampling is more complex. In the standard Monte Carlo case, the fre-
quency distribution is described by a single Planckian, Eq. (3), and the current census distribu-
tion. When the difference formulation is used, there are a number of new source distributions
that must be sampled. In the standard form, the initial census distribution carries over from the
census distribution at the end of the last time step. In the difference formulation, the Planck
function at the reference temperature Td is subtracted from the initial photon density (Eq. 57)
changing the magnitude of the initial transformed photon density and its frequency distribution.
This means that the energy needs to be added either into the photon energy density using ap-
propriate frequency bins (for multigroup methods), or as particles (for continuous or multigroup
frequencies) with the following probability distribution function PDFb[ν];

PDFb[ν] =
b[ν,Td]

∫ ∞

0 dνb[ν,Td]
= b[ν,Td]. (65)

In the grey case, this distribution is irrelevant and the transformed census energy can just be
subtracted from the total census. In the multigroup or continuous energy case, if the subtracted
reference energy is added to the census using a distribution of negatively weighted particles, it
may increase the variance rather than decreasing it. The census distribution will no longer be
positive; to avoid this, it is possible to create a grouped frequency distribution function that spans
the range of frequencies currently represented in census. The transformed census for each group
becomes

ed[νk] = e[νk] − aT4
d

∫ νk

νk−1

dνPDFb[ν] = e[νk] − aT4
d

∫ νk

νk−1

dνb[ν,Td]. (66)
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After the initial photon density has been modif ed, it is necessary to determine the frequency
distribution of the new spatial derivative in the transformed diffusion equation (Eq. (60)). This
streaming source term is treated as two separate sources, each with different opacity-dependent
coefficients. These two sources can be def ned as:

q−d [ν] j = −c
2D[ν] j−1D[ν] j

∆x j

(

∆x jD[ν] j−1 + ∆x j−1D[ν] j

)

(

b[ν,Td| j−1]aT4
d | j−1 − b[ν,Td| j]aT4

d | j
)

(67)

and

q+d [ν] j+1 = c
2D[ν] jD[ν] j+1

∆x j

(

∆x j+1D[ν] j + ∆x jD[ν] j

)

(

b[ν,Td| j+1]aT4
d | j+1 − b[ν,Td| j]aT4

d | j
)

. (68)

These two source terms both operate in zone j, and can have either sign. It is easily shown
that q−j+1 = −q+j , so the positive energy particles sourced into zone j are cancelled by negative
particles sourced into zones j − 1 and j + 1. The streaming source term adds no energy to the
problem. It is analagous to the face source term that arises in the difference formulation of the
transport equation [9], which gives rise to negative photons entering the hotter zone adjacent to
a face, and an equal amount of positive energy photons entering the colder zone.

For multigroup methods, Eqs. (67) and (68) provide the probability distribution functions for
the frequency of streaming particles:

PDFqd[ν] j−1 =
qd[ν] j−1

∫ ∞

0 dνqd[ν] j−1
(69)

and
PDFqd[ν] j+1 =

qd[ν] j+1
∫ ∞

0 dνqd[ν] j+1
. (70)

These PDFs generate cumulative probability distribution functions (CDF) and an event type can
be sampled using a pseudorandom number distributed uniformly between 0 and 1. These CDFs
are given by

CDFqd[νk] j−1 =

k
∑

0

∫ νk

νk−1
dνqd[ν] j−1

∫ ∞

0 dνqd[ν] j−1
(71)

and

CDFqd[νk] j+1 =

k
∑

0

∫ νk

νk−1
dνqd[ν] j+1

∫ ∞

0 dνqd[ν] j+1
. (72)

This method of distributing particles in frequency can be computationally expensive if performed
for every frequency selection. Improved performance may be possible using tabulated functions
or other selection techniques similar to those used in SIMC In Brooks’ approach, the stream-
ing operator is independent of opacity unlike the streaming source in our work. Tabulating the
distribution functions is likely a more usable approach.

After the new transformed census value is determined, the amount of initial reference energy
must be added back into the system to obtain the energy density:

e[ν]n+1 = ed[ν]n+1 + aT4
db[ν,Td]. (73)
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Again, it is necessary to consider the frequency distribution (described by equation 65) when
adding this energy back into the photon energy density solution. In this research, this addition is
performed in the same fashion as the initial subtraction, with the exception of when no particles
registered in census. In this case, particles were created with the frequency distribution of b(ν,Td)
and weights that sum to aT4

d . The frequency distribution of the normalized Planckian for this
work was selected using the efficient algorithm described by Barnett and Canf eld [21].
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6. Results

We f rst test the implementation of IMD on a one-dimensional grey test problem [1]. This
problem consists of an initially cold semi-inf nite body that has a f ux incident on the left face.
This problem has a normalized semi-analytic solution [3]. The Su and Olson results were trans-
lated into a normalized form to allow comparison with the IMD code results using the constants
def ned in Table 1. The unit (Mm) denotes mega-meters (or 1e+6 meters). All other parameters
used for the problems solved in this work are displayed in Table 2.

Constants
Constant Symbol Value Units

Planck h 6.626E-34 joule*sec.
Boltzmann k 1.381E-23 joule/Kelvin

Speed of Light c 299.8 Mm/sec.

Table 1: Constants used for all calculations

Parameters
Parameter Prob. 1 Prob. 2 Prob. 3 Prob. 4 Units

Number of Cells 500 120 120 500 N/A
Number of Particles 4000 400000 400000 10000 N/A

Length 50 15 15 50 Mm
Left Albedo 0 1 1 1 N/A
Right Albedo 1 1 1 1 N/A

Initial Material Temp. 0.005 0.005 0.01 0.01 K
Material Density 1.0 1.0 1.0 1.0 Kg/Mm

Number Of Time Steps 20 40 20 20 N/A
Final Time [τ] 1.0 1.0 1.0 1.0 N/A

Number of Groups 1 1000 N/A 1000 N/A

Table 2: Problem specif cations

Problem 1.1 is a grey purely absorbing Marshak wave benchmark problem. The face source,
which is constant over time and has a magnitude of 74.925 at x=0 and 0 elsewhere, emits photons
throughout the duration of the problem [0 ≤ τ ≤ 1.0]. The problem specif cation is included in
Table 2.

Figure 1 shows the grey IMD results - “censusSolution” denotes the photon energy density
as determined by the IMD method, “CensusAnalytic” represents the semi-analytic benchmark
result from Su and Olson, “materialSolution” denotes the material energy density calculated
via the IMD method and f nally “MaterialAnalytic” is the semi-analytic material energy density
benchmark result from Su and Olson. This f gure shows that the IMD method can accurately
reproduce the Su and Olson purely absorbing grey benchmark result [3]. There is a signif cant
amount of noise in the low energy regions of the solution. This is related to the relatively small
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Figure 1: Grey IMD solution compared to Su and Olson result [3] at τ = 1.0. (Problem 1.1)

number of particles created in these regions because of the comparatively low contribution to the
total energy of the system.

In Problem 1.2, the Su and Olson grey benchmark problem is solved using the grey IMD
method with the difference formulation. For all frequency independent IMD calculations, a
single opacity of 1.0 was used. The difference formulation reference temperature was chosen to
be the material temperature in the associated cell. This problem specif cation is identical to that
of Problem 1.1 (see Table 2).

A comparison of Figures 2 and 1 demonstrates the value of the difference formulation in
reducing the variance in the solution. In Figure 2 we observe that the greatest variance reduction
occurs in the region where the material is near thermal equilibrium. In fact, on the right side of
the Marshak wave no particles are actually transported and the variance due to the Monte Carlo
method in this region is equal to zero. The energy is simply subtracted off at the beginning of
the time step during the initial differencing of the problem and is added directly back into the
problem at the end of the time step.

We now consider the solution of the Su and Olson frequency-dependent benchmark problem
with a picket fence opacity def ned such that: a) the bins are logarithmically spaced in frequency;
b) even frequency bins have a large opacity; and c) odd frequency bins have a small opacity. The
opacities are chosen such that the Planck opacity is equal to one [4]. The opacities are shown in
Table 3 and the remainder of the specif cations for this problem (Problem 2.1) are listed in Table
2.

The results from the standard IMD method for Problem 2.1 (Figure 3) show that frequency
dependent IMD can accurately reproduce the results of the semi-analytic picket fence opacity
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Figure 2: Grey solution with the difference formulation compared to Su and Olson result [3] at τ = 1.0. (Problem 1.2)

Picket Fence Opacities
Small Opacity 2

101
Large Opacity 200

101

Table 3: Opacities used to construct the opacity distribution for the frequency dependent IMD results.

benchmark def ned by Su and Olson [4]. Here “smallOpacityCensus”, “largeOpacityCensus”,
and “materialSolution” refer to the photon energy density for the small opacity, large opacity, and
the material energy density respectively, as calculated by the multigroup IMD method. The Su
and Olson semi-analytic result for the small opacity photon energy density, large opacity photon
energy density, and material energy density are labeled as “smallAnalytic”, “largeAnalytic”, and
“materialAnalytic”, respectively. The photon energy density associated with the large opacity
is underestimated in the regions between x=2 and the front of the Marshak wave because not
enough particles are created in that region to get an accurate distribution of the thermal emission
frequencies. There is signif cantly more noise in the cold region of the problem due to the low
overall contribution of energy in those cells. This means that very few Monte Carlo particles
register in this region resulting in overall poor statistics in these regions.

The effect of the group ref nement on the material energy density and the calculation time
was also investigated (Problem 3.1). This problem has the specif cations listed in Table 2 with
several choices of group structures: 1000 groups, 2000 groups, 4000 groups, 8000 groups, and
16000 groups.

Figure 4 shows the computational cost as a function of frequency group ref nement. The cost
20



Figure 3: Normalized one dimensional frequency dependent solution compared to Su and Olson result [4] at τ = 1.0 with
no difference formulation. (Problem 2.1)

Figure 4: Computational cost as a function of number of groups used in the calculation (Problem 3.1)

of solving this multigroup problem deterministically (via a tridiagonal solver) scales linearly with
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the number of groups used. Similarly it was found that IMD scales linearly up to 16000 groups.
The frequency dependence of the Monte Carlo method is determined via the random sampling
from the frequency distribution functions. The cost per group curve has a slope approximatly
equal to 1/2 compared to a deterministic method, which would be nearly one. The R2 value
shown in Figure 4 shows how well the linear f t equation y(x), which denotes the calculation
time(y) as a function of the number of groups(x), matches the values that the line is being f t to.
A value of 1 means that every value lies exactly on the linear f t.

The next test problem explores properties of the frequency dependent implementation of IMD
and the difference formulation. We generated three different solutions using the IMD method
with the difference formulation and one without the difference formulation (Problem 4.1). The
problem specif cations are listed in Table 2. The reference temperature distribution used in the
difference formulation is a user def ned quantity. This temperature was chosen to be some frac-
tion of the current material temperature for the associated cell. The percentages of the material
temperature selected were 0.0% , 10.0%, 30.0%, and 50.0%. We are interested in the effect this
choice has on the computational cost of the method and the degree of variance reduction.

Figure 5: Non-grey result at various percentages of the material temperature for the difference formulation. (Problem
4.1)

Figure 5 shows that the IMD solutions with the difference formulation match the solution
without the difference formulation. Figure 6 shows that there is not a signif cant reduction in
the noise from the use of the difference formulation in the cold region of the problem. The
results for the difference formulation with the reference temperature equal to that of the material
temperature were not included because of numerical instability. The primary instability occurs
when a cell’s material energy density becomes negative as a result of negative weight particles
created by the difference formulation. We discuss this further in the conclusions of this paper.

In some instances, there is also an instability in the cumulative distribution function used to
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Figure 6: A magnif ed view of non-grey result at various percentages of the material temperature for the difference
formulation. (Problem 4.1)

calculate the frequency distribution (equations 71 and 72) for the difference formulation source.
This instability exists because of the subtraction of two nearly equal numbers when the Planckian
distribution for a frequency group is low for both temperatures creating large roundoff error. This
also was found to occur if the Planck integral expansion was not accurate enough. The Planckian
integral expansion for a higher temperature at a given frequency can be smaller in magnitude
than that of a lower temperature. This is unphysical because it is known that the Planckian at a
higher temperature is larger at every frequency than the Planckian at a lower temperature.

The relative standard deviation is a measure of the statistical uncertainty of the solution com-
pared to its mean. The relative standard deviation is simply the standard deviation of the associ-
ated cell energy density divided by the value of the energy density in that cell.

In Figure 7, “Rel STD 50 0.1Tm” denotes the relative standard deviation (Rel STD) of the
material energy density with total problem length equal to 50 Mm and the difference formulation
reference temperature equal to 10% of the material temperature. The other values are def ned
similarly with the exception of “Rel STD 50 noDF” which denotes the solution generated without
the difference formulation. This f gure shows that with the exception of the leading edge of the
Marshak wave, the relative standard deviation is consistently lower throughout the majority of
the plot for all choices of the reference temperature. This is especially true for the portions of
the problem that are near equilibrium (either ahead of or behind the wave front). Figure 8 shows
a better view of the average standard deviation associated with the cold region of the problem.
The average standard deviation is reduced as the reference temperature approaches the value of
the material temperature. However, the Monte Carlo noise makes this difficult to distinguish, so
the f gure of merit was calculated for each of these problems and is presented in Figure 9.

For Problem 4.1, the total f gure of merit is the sum of the f gure of merit for each cell over the
whole problem. The associated relative total f gure of merit is the total f gure of merit associated
with a given variance reduction technique divided by the total f gure of merit without it.
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Figure 7: The relative standard deviation of the material energy density for the different realizations of Problem 4.1.

Figure 8: A zoomed in view of the relative standard deviation of the material energy density for the different realizations
of Problem 4.1.
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Figure 9: The relative total f gure of merit for the difference formulation at various percentages of the material tempera-
ture. (Problem 4.1)

Figure 9 shows the relative increase in the f gure of merit as a function of the percent of the
material temperature used for the difference formulation. This f gure shows that there is a strong
increase in the f gure of merit as the difference formulation reference temperature approaches the
material temperature.

25



7. Conclusions

We have applied the difference formulation to the grey IMD method and computationally
tested it. Working with a grey system is simpler than a multigroup system because there is no
need to distribute the differenced energy among frequency groups. It can simply be subtracted
and added to the total photon energy density. Similarly, there is no need to randomly sample
from the frequency distribution of the streaming source obtained from the difference formulation.
Though the grey system is a good platform for initial testing, it is not a realistic physical model
of any radiative transfer applications. The multigroup method was initially successfully tested
on a grey problem by setting the opacity equal to a single value for every frequency.

Using a Monte Carlo method for solving the linear system associated with a discretized
multigroup diffusion equation has advantages and disadvantages. The major advantage is that
there is no need to solve the matrix for each group. However, the solution of the linear system of
equations using Monte Carlo can take much longer than the deterministic solution. The goal of
developing IMD was to couple it with IMC. Using a Monte Carlo method to solve the diffusion
equation has the advantage that it is much easier to couple to the IMC method. Using the criteria
def ned by Densmore et al, it is possible to transition particles from IMD (or DDMC) to IMC
[11]. For the deterministic solution, the spatial domain must be decomposed and the deterministic
solution could only be coupled to the IMC solution at the end of every time step.

The reduction in variance achieved by the difference formulation, as is the case with most
variance reduction techniques, comes at a cost. Without the difference formulation, the IMD
Monte Carlo procedure is unconditionally stable. This is not true for the system with the dif-
ference formulation. In standard IMD, there are no negatively weighted particles created. This
means that the total energy in any cell can never become less than zero. Equations 67 and 68,
which represent the streaming source terms created from the difference formulation, allow the
creation of negative weight particles. This means that it is possible for more negative weight
than positive weight to be deposited into a single cell, causing the overall material temperature
to become less than zero. One way to alleviate this is to use absorption and census suppression
with a very low weight cutoff. Several test problems demonstrated how unstable the difference
formulation can be even for the grey case. The stability appears to be strongly dependent on the
number of particles that are used and the spatial gradient of the energy density. The difference
formulation typically fails at the leading edge of the Marshak wave. It never failed in the large
near-equilibrium back end of the Marshak wave or the cold portion of the material at thermal
equilibrium. In fact, even if a vacuum boundary is set on the cold side of the problem, well away
from the head of the Marshak wave front, the system was stable. The f gure of merit was not de-
termined for the grey case because it would be much higher than that of the frequency dependent
difference formulation. The estimation of computational efficiency of the difference formulation
was limited to the frequency dependent case.

This research shows that frequency dependent IMD can be used to accurately reproduce
solutions to the frequency dependent radiative transfer equations where the diffusion approxima-
tion is valid. It also shows that frequency dependent IMD is stable if the spatial and temporal
discretization schemes used to generate the linear system are stable. Though this frequency de-
pendent system is solved via IMD, frequency dependent DDMC is also possible. The primary
difference between DDMC and IMD is the treatment of the temporal variable.

The difference formulation was shown to have some signif cant advantages and disadvantages
when used with IMD. Implementation of the difference formulation signif cantly increases the
f gure of merit in regions of the problem where the system is near equilibrium. However, there
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was no signif cant noise reduction from the frequency dependent difference formulation and it
can also become unstable in regions containing sharp gradients. This is a result of the creation
of large negatively weighted particles from the streaming source. These instabilities can be
reduced by using a lower temperature for the difference formulation. This reduces the number of
negatively weighted particles being produced and it increases the number of positively weighted
particles created by the thermal emission source. These instabilities do not occur in SIMC with
an implicit treatment of the reference temperature.[9, 13]. However, comparable instabilities
have been noted in SIMC when the reference temperature is treated explicitly.[13]

Several improvements to IMD could be explored, including extension of the method to two
or three dimensional orthogonal meshes. However, unstructured polyhedral meshes, which are
sometimes used in high energy density physics, pose difficult problems because of the possible
creation of positive off diagonal elements in the coefficient matrix [1]. For the leakage probabil-
ities to be positive, the off-diagonal elements of the coefficient matrix must all be negative.

Improved implementations of the difference formulation should also be explored. This in-
cludes automating the use of the difference formulation in different regions of the problem. The
goal is to focus the use of the difference formulation where the system is near equilibrium and
reduce its use in regions of sharp gradients. More work should also be performed to develop an
efficient and stable algorithm for the sampling of frequency distribution function of the differ-
ence formulation streaming source. The majority of the computational work for the difference
formulation is associated with the sampling of this source.
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